第二章 需求理论(下)

 《价格理论》

  无差别曲线理论

  无差别曲线方法是简明地概括偏好的另一种工具。考虑任何一个商品空间XY,并考虑在这一商品空间中标价为P的X和Y的任何一组。这一商品空间如图2.15所示可分为四个象限。让我们假设,个人宁愿要每种商品中较多的一份而不愿要较少的一份。那么,在标为3的区域内的任何一点显然都是比P点更能满足偏好的,因为它表示或者可多得到些X,或者可多得到些Y,或者两者都能多得些。根据同样的道理,就P点代表着或者是更多的X,或者是更多的Y,或者两者都更多些而言,P点显然比标为1的区域内的任何一点都更能满足偏好。至于第2和4象限中的点,我们可以试问我们正在决定其偏好的个人,他是如何安排各点相对于P点的位置的。我们可以将他的各种选择分别标为+或标为-。以这种方式,我们可以将区域2和4中的点分别加以+或-号。在各+号和-号之间将存在某种边界线,在此线上的各点代表着对他来说是无差别的各种组合,而这条线我们可以称作无差别曲线。我们假设人们偏好于多多益善时,就意味着这条无差别曲线不能横跨第1和第3象限。因此,无差别曲线决不会具有正斜率,而必须是在经济区域中所有各点上都呈负倾斜。确定了无差别曲线在所有各点上均呈负倾斜,还存在着该线或者对原点下凹或者对其下凸的可能性。在下面将要说明其论据基础上,假设无差别曲线凸向原点是合理的,通过从P点以外的一点开始,我们可以用相同的方式划出一条无差别曲线。原则上讲,无差别曲线通过每一个点。一组特定的无差别曲线就是一个特定的个人偏好图。

  至于一个特定个人的种种机会,则可以在几何上如图2.16那样表示出来。个人被假定有一项货币收入I,他将这项收入用于商品X和Y。若他将他的所有收入都用于商品Y,他可以购买I/Py个单位的Y。若他将他的所有收入用于商品X,他可购买I/Px个单位的X。因此,这条线相对于X轴的斜率是Px/Py。从经济上说,这意味着,如果个人少购买一个单位的X,他就节省了数量相等于Px的货币。用这一数量的货币,他可购买Px/Py个单位的Y。Px/Py因此代表着商品Y可以用来替代商品X的比率。图中的阴影部分代表可实现的各种组合的区域。

  再加上两条已经得到的边界线,我们看到,个人决不会停留在可实现的各种组合的区域内,而是将努力达到边界线上。均衡的条件是,个人选择位于最高的无差别曲线上,同时也位于可实现的组合所构成的线上的那一点。现在可以看清了假设无差别曲线关于原点呈凸性的理由了。如果无差别曲线是向原点处下凹的,那么,均衡点将位于两条轴中的一条之上,即我们将会看到人们在消费方面专一化。因此,我们将这一点排除了。如果无差别曲线在某些地方凸向原点,某些地方凹向原点,那么,个人就不会在无差别曲线凹向原点的任何部位处于均衡状态。因此,无差别曲线在经济上有意义的部分总是其凸向原点的部分。若各无差别曲线都是凸向原点的,则均衡点就是可实现的消费组合线正切于一条无差别曲线的一点。

  如上所述,可实现的消费组合线的斜率是Px/Py,或者说是个人能够依以商品Y代替商品X的比率。类似地,对无差别曲线来说,如果个人放弃一个单位的X,他将失去约Ux个单位的效用。因此,为了使个人保持在同一条无差别曲线上,必须给他Ux/Uy个单位的Y。Ux/Uy因此表示了这个人愿意以Y代替X的比率。均衡的正切条件要Ux/Uy=Px/Py,既然Ux/Uy从数量标明了无差别曲线相对于X轴的斜率。表述这一均衡条件的另一种方式是说:个人愿意以Y代替X的比率必须等于他能够以Y代替X的比率。

  我们现在可以来看一下为什么前一节的三种效用函数能得出同样的需求曲线。所有三个效用函数能产生出同样的无差别图。例如,如果U=F(X,Y)是效用函数,那么由这一效用函数产生的各条无差别曲线将具有的斜率是-[aU/aX]/[aU/aY]=-Ux/Uy。如果我们取U的任何函数,譬如说U*,使U*=G[U(X,Y)],那么,由这一U*函数所给出的无差别曲线的斜率将是-[dU*/dU]Ux/[dU*/dU]Uy=-Ux/Uy。由此我们看出,所有这些效用函数将具有同样的无差别曲线。即使dU*/dU≤O,这一点也成立。dU*/dU>O的条件是对于保证按同一方向排列是必要的。

  刚才我们已经看到,无差别曲线是分割两个区域的一条分界线,一个区城包括那些与处于无差别曲线上的各种商品组合相比得不到偏好的各种商品组合,另一个则包括那些相比之下得到偏好的各种商品组合。无差别曲线的斜率是消费时的替代率。预算线的斜率则表示了购买时的替代率。预算线不一定就是直线。在一种鲁宾逊·克鲁索经济中,无差别曲线将和上面所描述的一样,但相应地却不是有一条预算线,而是将有一条转换线。这条曲线的斜率所代表的将不是市场上的,而是生产中的替代率。

  无差别曲线作为工具的目的在于推导出需求函数,例如说,根据X的价格,Y的价格以及货币收入推导出X商品的需求函数。然而,显然若所有价格和收入都翻一番,个人的机会线将仍然不变。这意味着Px、Py和I的绝对水平并不重要,重要的是比率,如Px/I和Py/I。实际只有两个相互独立的变量。如果我们假定当收入增加时相对价格不变,我们就能得到作为收入的一个函数的X和Y的需求量。

  例如,在图2.17中,假定了ABCDE线是平行于所划的那些可实现消费组合的各条线正切于无差别曲线的各点的轨迹。在AB线段,当收入增加时,X和Y的量都将增加;从B到C,当收入增加时,X的量增加,而Y的量减少;从C到D,当收入增加时,X和Y的量都增加;从D到E,当收入增加时,X的量减少,而Y的量增加。如果随着收入的增加一种商品的消费量也增加,则该商品称作优等品,而如果随着收入的增加,一种商品的消费量减少,则该商品称作劣等品。在上图中,在A和B以及C和D之间,X和Y都属于优等品;而在B和C之间,X属于优等品,Y为劣等品;在D和E之间,X为劣等品,Y为优等品。同样的结果可以如图2.18中那样以恩格尔曲线的形式表示出来。数量随收入变动的情况可以用数量相对于收入的弹性(通称收入弹性)或dq/dI·I/q来表示。如果dq/dI·I/q>O,则相应的商品为优等品;如果dq/dI·I/q<O,则相应的商品为劣等品。如果dq/dI·I/q<1,则花在该商品上的收入的百分比随收入的增加而减少;如果dq/dI·I/q=1,则收入的百分比不变;如果dq/dI·I/q>1,则花在该商品上的收入的百分比随收入的增加而增加。

  我们已经指出过,收入弹性经常被用来定义必需品和奢侈品。如果一种商品的收入弹性小于1,则称之为“必需品”,如果其收入弹性大于1,则称为“奢侈品”。

  对所有商品的单位收入弹性将意味着,在无差别曲线图上收入支出路径将是一条通过原点的直线。根据收入弹性的定义可得,kxηx1+kyηy1+…=1,其中kx是收入中用于X的部分,ky是用于Y的,等等;而ηx1是X的收入弹性,ηy1是Y的收入弹性,等等。

  无差别曲线分析中隐含的三分法

  无差别曲线条件下的消费者行为分析隐含地将影响消费者行为的所有因素分为三类:(1)商品——这些是无差别曲线的各个轴;(2)决定机会的因素——这些被概括为预算线;(3)决定偏好的因素——这些被概括为无差别曲线。

  关于这一划分方法的一件重要事情是,它并非是一成不变的。它是一种内容要由所研究的问题来决定的划分方法,因而,同一种因素对于一种研究目的来说可以按商品来对待,并用各条轴来度量它,对另一种研究目的来说就可能按照机会因素来对待,对再一种研究目的还可能作为偏好因素来对待。

  为了说明这一点,考虑一下地区选择问题。对于一个正在考虑在哪里定居的人来说,这显然是一种商品,应在其中一条轴上来度量。当此人定居了以后,它就成了一种机会因素,既然它将影响此人对于各种商品和服务所须支付的价格,既然它可能影响此人赋予冬大衣相对于浴袍或赋予暖气相对于空调器的重要程度,因此,也是一种偏好因素。

  从形式上说,所有这些方面都可以通过把地区选择作为在一条轴上度量的商品的方式来处理。对于每个地区选择,都有一个可实现商品组合的多维面与无差别曲面的交叉部分与之相对应。相对于一种地区选择的曲面交叉部分,可能对应于与另一种选择相应的交叉部分所对应的不同的机会和偏好。尽管这一点从形式上看完全正确,但是,这并不改变随问题的不同而发生的着重点的变化。

  另一个有趣的例子是,一个家庭中的孩子数量。部分地说,父母在决定要多少孩子时都是深思熟虑的。对这个问题而言,孩子是选择的目标,是一种应该在一条轴上度量的“商品”。但是,一旦孩子出世,他们显然会影响机会(例如,看电影的费用将因额外支付婴儿保姆费而提高)和偏好。另一个也是非常重要的复杂变化是,图上出现了另一组无差别曲线——孩子的无差别曲线。

  从无差别曲线推导需求曲线

  现在可以来说明一下怎样可以从无差别曲线推导出需求曲线了。如果我们将货币收入保持不变,并允许X的价格变化,那么,如图2.19所示,价格比率线将绕Y轴上的一个中心点旋转。对X的不同的价格,我们将得到X的不同的需求量,这样就可以得到一条需求曲线,这实际上就是通常的方式。然而,在这种需求曲线中,当人们沿这条线移动时,实际收入也发生了变化。

  还可以建立起另一种不同的需求曲线。考虑一组商品,Xo,Yo,并且通过这组商品画一条预算线。这条线可以绕该点旋转。这是试图使表面的实际收入保持不变的一种方式。这些线的方程是PxXo+PyYo=I。从图上看,这第二种方法如图2.20所示。对于固定的货币收入来说,这等于保持了货币的购买力不变。通常建立一种物价指数的方法是,把它作为一组特定商品的(相对)成本来计算。例如,如果这组商品由(Xo,Yo)构成,而且,如果在两种情况(两个时间单位,两种地理区域,等等)下的价格分别是(Px,Py)和(P’x,P’y),那么,在第二种情况下的物价指数相对于第一种情况而言就是P’xXo+P’yYo/PxXo+PyYo。但如果I是固定的,那么,对于所有通过这一点(Xo,Yo)的预算线来说,这一比率显然都是1,既然这时被除数和除数都等于I。

  这些线对无差别曲线的切点构成一条需求曲线,就货币收入除以一种用前述方法计算出来的物价指数所得的“实际收入”相同这一点而言,对于该需求曲线来说,“实际收入”是不变的。

  还有一种需求曲线可以通过考虑一组预算线与一条单一的无差别曲线相切而得到。相应的数量和相对价格将给出一条需求曲线,对这一曲线来说,“实际收入”在其效用的意义上是不变的。

  这几种不同的建立需求曲线的方法之间的关系或许可以通过考虑所谓在所有其他价格和货币收入都不变的情况下,一种价格的变化所产生的收入效应和替代效应来更好地说明。在考虑这些问题的时候,我们希望区别“斯卢斯基”效应,即相当于绕(XoYo)点旋转预算曲线所产生的结果,和希克斯效应即相当于考虑一组预算线与一条单一的无差别曲线相切的结果。

  看一下表2.4和图2.21。表2.4显示了收入效应的斯卢斯基测度和希克斯测度之间的差别。(a)和(b)之间的差别在于,当Y的价格和货币收入不变时,X的价格更低了。既然他将消费更多的X和Y,消费者显然生活得更好了。情况(c)是斯卢斯基称作从情况(a)开始的得到补偿的价格变化的那个东西。(c)中的收入比(a)中的少,其下降幅度恰恰足以使个人在X的较低价格水平上,能够购买同以前数量一样的X和Y,如果他愿意的话,50个单位X的现值是25美元,而不是50美元,而他现在的收入少了25美元。用斯卢斯基的话说,他的表面的实际收入没有变,但在新的价格水平上,这个人并不购买50个X和50个Y;他购买60个X和45个Y。既然他审慎地选择了后一组商品而非前一组,我们必须假定他偏好于后一组;结果是,他的“实际的”实际收入在(c)情况下比在(a)情况下高;他位于更高的无差别曲线上了。对希克斯来说,为了使这个人保持在同一条无差别曲线上,必须取走他足够的货币收入。我们可以假定,这将如情况(d)所表明的那样,要求取走28美元,这描述了一条同样与(a)情况中那条无差别曲线相切的预算线。除了在下述这方面有所不同外,即,不是表示出为补偿。

表2.4
(a)IPxPyXY
100115050
(b)1001/218060
(c)751/216045
(d)721/215843
(e)1002/34/316045
(f)10050/72100/725843

相对价格的下降而形成的一种变化了的收入,而是表示出Y的变化了的价格——一种不变的“货币购买力”情况(e)和(c)一样。类似地,(f)和(d)一样,表示出在一种略为不同意义上的不变的“货币购买力”。

  斯卢斯基测度的优点在于,它可以直接从可观察到的市场现象和行为即价格和购买量中求得,尽管在某种意义上它只是一种近似值。而希克斯测度则不然。希克斯测度不能直接求得,它要求进一步了解无差别曲线。价格变动越小,即表中的Px越接近1,则斯卢斯基测度和希克斯测度之间差别的意义就越小。

  希克斯和斯卢斯基测度给出了具有使实际收入保持不变性质的需求曲线的两种构造方式。我们可以通过运用希克斯对实际收入变化的测度来导出一条需求曲线,这等于使一条无差别曲线形成扇形。或者我们也可以通过运用斯卢斯基对实际收入变化的测度来导出一条需求曲线,这等于绕点旋转一条线。可以说,斯卢斯基方法是使表面的实际收入保持不变的一种方法。图2.22说明了所讨论的三种需求曲线之间的关系:(1)普通需求曲线,在这一曲线上所有其他价格和货币收入都相同,而且作为一种结果,实际收入变化了;(2)通过(象希克斯那样)将个人保持在同一条需求曲线上而使实际收入不变的需求曲线;和(3)(像斯卢斯基那样)将表面的实际收入保持不变,而且使个人总能够购买最初的那组商品的需求曲线。

  这三种需求曲线之间的差别通过参考图2.23将会看得更清楚。作为商品X价格变化的一个结果,我们有一次从P到Q或从X1到X4的运动。从X1到X4的这一运动就是包括在通常所定义的需求曲线中的那种运动。然而,从X1到X4的这一运动作为价格变化的一个结果是一次收入效应和一次替代效应的综合结果。如前所释,将需求曲线仅限制在替代效应上可能是需要的。我们可以用两种方式来分解从X1到X4的运动。按照希克斯的方式,我们可以说,从P到S或从X1到X2的运动是贸易条件变化或替代效应的一个结果。从S到Q或X2到X4的运动是收入变化的结果。因此,

     总效应  收入效应   替代效应
    (X4-X1)=(X4-X2)+(X2-X1)

  这一方法在形式上比下面那种方法要简练,但它与可观察到的数量无关。

  另一方面,我们可以试着按照斯卢斯基的方式利用可观察到的数量将收入效应和替代效应分离开。当个人处在P点时,他在价格Px和Py的水平上消费X1和Y1,而且将他们的全部货币收入都用于这些商品。如果X的价格从Px变化到Px十△Px(在所画出的图上,△Px是负的),而Py不变,显然需要花费I+X1△Px来购买和以前同样的一组商品,即X单位的X1和Y单位的Y1。我们因此可以将一项收入(I+X1△Px)和价格(Px+△Px,Py)看作是起于初始状态的一次得到补偿的价格变化,即其实际收入效应被货币收入的变化所抵消的一种价格变化。随着这得到补偿的价格变化,个人将从P移动到R或从X1移到X3。按照斯卢斯基的说法,我们可以称之为替代效应,而将从R到Q或从X3到X4的移动称作收入效应。故:

      总效应   收入效应  替代效应
     (X4-X1)=(X4-X3)+(X3-X1)

  人们将会注意到,希克斯和斯卢斯基方法的区别在于(X3-X2)。由莫萨克给出的基本定理是:当△Px趋于零时,(X3-X2)项比其他任何差项都更快地趋于零。这一点当然是正确的,即:当△Px趋于零时,Q、R和S都趋向于P点。这意味着当△Px趋于零时,(X4-X3)、(X3-X1)、(X4-X2)和(X2-X1)以及(X3-X2)均趋于零。然而,(X3-X2)与所有其他量不同,它更快地趋向于零,因为当△Px趋于零时,(X3-X2)/(X4-X1)的极限为零,但是,当△Px趋于零时,(X4-X3)/(X4-X1)等的极限并不必然是零。这一点的含意是,测量保持实际收入不变所需货币收入变化的斯卢斯基测度是货币收入理想变化的一个很好的近似值。现在我们可以将这些不连续的差分方式写成连续的形式:

  (1) aX/aPx=aX/aI(-aI/aPx)+aX/aPx(希克斯)
     I=I2  U=U1    U=U1
     PY=PY1        PY=PY1
  (2) aX/aPx=-X1(aX/aI)+aX/aPx(斯卢斯基)
     I=I1         PY=PY1     PY=PY1

  I=I1+X1△Px其中对于方程2,X1=aI/aPx,既然为补偿价格变化所需的I的变化是X1△Px,而其每单位变化是X1△Px/△Px或X1。上述两个方程左边的一项是从X1到X4的移动除以价格的变化;即它是价格的每单位变化所引起的数量的变化。两个方程的右边的第一项是收入效应,这一效应是通过应用数学分析方法,即取每单位收入变化所引起的数量变化并乘以从原无差异曲线转到新无差别曲线过程中所隐含着的每单位价格变化所带来的收入变化。两个方程右边的第二项是替代效应,而它表示,当个人被保持在同一条无差别曲线上或在货币收入方面得到一项补偿时,每单位价格变化所引起的数量变化(见图2.24)。我们可能注意到了另一个事实:aX/aPx是普通需求曲线的P点的斜率。

  I=I1
  Py=Py1

  因此,如果我们采用斯卢斯基的表达式,并对其中的每一项乘以Px/X,我们得到:

      [Px/X][aX/aPx]=-[aX/aI]Px+[aX/aPx][Px/X]
      I=I1   Py=Py1
      Py=Py1   I=I1+K1△Px

  此方程式左边的那项不过就是普通需求曲线在点P的需求弹性。我们记之为ηxp。另一项-[aX/aI]Px=-kxηxI,其中Kx=XPx/I,即收入中用于X商品的部分,而ηXI=[aX/aI][I/X]即X的收入弹性。最后一项,

     [aX/aPx][Px/X]
      Py=Py1
      I=I1+XI△Px

  是一条表示实际收入不变的需求曲线在P点的需求弹性。我们将称之为ηXP。因此,我们得到下式:
     ηXp=-kxηXI十ηXP

  劳动供给的效用分析

  到目前为止,我们一直把收入和对消费服务的总支出作为同一个事物来对待,或者更一般地说,我们一直考察一项固定的总额在各种不同的消费服务之间的配置,而不问那项固定总额是如何得到的。被分配到支出上的这项总额本身就是两组要实现效用最大化的决策的结果:(1)关于消费单位可以支配的资源性劳务应有多少用于生产活动的决策,以及(2)关于在当前消费性劳务上花费多少以及对已积累起来的财富增添多少或从其中减掉多少的决策。原则上,整个决策应看作是同时做出的,但是在分析时分别加以考虑是方便的。我们可以把决定一项假设的总额如何分配于各种不同的消费性劳务的决策看作是决定附着于那一消费量的效用水平的决策,然后这一效用水平又作为一个单独的方面参与另一项决策。

  对于消费单位所拥有的某些资源,其如何使用对消费者来说是无差别的。对财产(非人力资本)而言,一般情况是这样。对于这类资源,实现使用这些资源所得效用的最大化就等于使用这些资源的收入最大化。对另一些资源而言,特别是对于由个人提供的生产性劳务,即他的人力资本而言,不但对使用这些劳动支付多少报酬,而且如何使用这些劳务,对这个人来说都是重要的。工作使效用和反效用的内容具体化,而且效用或反效用可能依赖于所做工作的种类和数量。实际上,提供人的生产性劳务须看作是生产性劳务的出卖以及与所从事生产活动相关联的舒适性消费这两者的结合。我们将在第十一章“生产要素的供给”中进一步考察这一选择。

  在这里只通过考察下面这种简单情况以说明人力资本配置的效用分析方法:即不考虑存在多种生产活动和涉及多种工作条件(非金钱优势和劣势)可供个人选择的可能性,只考虑每单位时间内向市场提供多少等质劳动时数的选择问题。

  图2.25画出了一个人的一组假想的无差别曲线。纵轴表示消费,或每单位消费性劳务的总价值。众所周知,通常总是暗含地假设最大化过程隐蔽在每一消费值后面:假设消费分布在不同的劳务上面,从而使效用最大化。横轴表示每周工作时数。在每周168小时这一点上有一条垂线,因为那是体力上所能达到的最大工作时数。无差别曲线被划成随着工作周长度的增大而失降后升。下降线段的含义是:某些工作是一种“好事”,即个人愿意牺牲某些消费以便能够工作,亦即,如果他有其他的收入来源,则他会愿意付出以便能工作。然而,图2.25假定超过一定的小时数以后,增加的工作就是一件“坏事”,即它引起反效用,而个人将不愿更多地工作,除非能有另外的消费使这些工作得到补偿。这些无差别曲线表现出最终逐渐接近于每周168小时的体力上的最大极限。无差别曲线越高,则效用水平越高——即对于一个既定的劳动量,消费量越大,效用水平越高。

  显然,下降线段可能并不存在;可能不论工作周有多短,工作都被看作是一种“坏事”。这里将下阵线段包括进来是为了说明一般情况,这一情况对于劳务特别明显,即一种特定的劳务到底是“好事”还是“坏事”不是一个依赖于其物理性质的技术现象,而是一个依赖于消费者偏好和市场供求的市场现象。同一种物理性能既可能是一件“好事”,也可能是一件“坏事”,依情况而定。如果市场价格是正的,则它是好事;如果价格是负的,则它是坏事。举一个不太贴切的例子,摇滚歌星唱歌这种工作显然是一件“好事”,因为公众为了听到这种歌唱都愿意支付较高的价格;我们当中的某些人唱歌要向别人付钱。随着人们音乐爱好的改变,在某一时期是“好事”的东西可能要变成一件“坏事”,或者相反。从更基本的角度来看,在现代先进社会中,可以看到的唯一艰苦的、劳累不堪的体力劳动几乎就是从事体育运动工作,而且他们典型地是为从事这项劳动的特权而付出了代价。在以往的太平盛世是件“坏事”的东西,现在变成了一件“好事”。

  图2.25中的直线OW和W’W’是可实现的商品组合线,或预算线。OW线与个人没有除其劳动收入以外收入来源的情况相对应,所以它是从原点开始。这条线的斜率就是每小时的工资率(减去税收等等之后的净值,故它表明了可以用于消费的数量)。切点处给出了OL线,这是使个人能够得到最高的无差别曲线的劳动量。注意,这里是“最高的”,而非“最低的”无差别曲线,因为此线是上凹的,这就从根本上证明了这样划它们是对的。

  w’w’线对应于个人有Ow’的非劳动收入来源的情况。象图上所画的那样,个人因此而将其工作周长度缩短到OL’。当然,这项结果不是必然的。它只是反应了一组特别的无差别曲线的情况,尽管它看来是所期望的结果,至少对高于某种最低水平的劳动收入是如此。

  在前一节中从消费者无差别曲线导出需求曲线时所用的那种分析显然也可以在这里用来推导适用于工资率和非劳动收入的不同组合的劳动供给曲线,而前面关于收入效应和替代效应的分析在这里也可以适用。你会觉得做一下这些分析是有益的。

  储蓄的效用分析

  现在让我们转过来看一下决定将得自资源性劳务出售的收入中多少用于现期消费,以及多少用于增加积累起来的财富,或者从财富中减去多少加到用于现期消费的预期收入上的决策问题。(在第17章中,将运用这一分析,并在某些方向上加以扩展)这里试图将这一决策结合到效用分析中来,所用的方法和我们刚才将决定工作多少小时的决策结合进来时所做的一样,即在无差别曲线图上加上另一条轴,这条轴用来测量储蓄,或每年加到已积累起来的财富上的美元数。实际上,莱昂·瓦尔拉斯在其伟大的著作《纯粹经济学要义》的较早几版中抵制了这一作法,但他还是在其最后一版中采纳了这一作法,该书的英译本以《纯粹经济学要义》为题出版。

  把效用分析扩展到包括对储蓄的分析,表面看来是很简单的,但若假定因此需要在一条轴上测量消费而在另一条轴上测量储蓄率,两者都以每年的单位货币数来度量,就可以看出其中的难点。如,有关的价格比率是什么呢?显然是1:每年总可以通过从消费中减少一美元而给储蓄增加一美元。瓦尔拉斯想把替代效应包括到其论述中,但他不是把应沿储蓄轴度量的变量定义为每年用于储蓄的单位货币数,而是将其定义为商品E,它等于用储蓄购买到的持久收入流,即用一美元的财富得到的持久收入流r,这里,r是利息率。因此,一个单位E的价格是1/r,或利息率的倒数(若r=0.05,则一年内要花20美元钱才能买到1美元的利息)。但是,这使两个轴不可比了:消费是个流量,是每年的单位货币数;E是一个流量的变化率,一个二阶导数,即每年的年单位货币数。拥有一个适当定义的效用函数的无差别曲线是不会随时间变化的,不论处于它们之上的哪一点,只要潜在的基本条件相同,就会如此。但是对于消费和瓦尔拉斯商品E的无差别曲线来说,情况就不同了。一个正的E使财富存量增加,因而随时间推移,有关的个人会变得越来越富。对同一种消费水平来说,个人愿意用进一步增加财富来替代进一步增加消费的比率将会下降。如此定义的无差别曲线将发生变化。

  这个简单方法的困难在于,储蓄并非是像食品、服装等等而是另一种商品,并依储蓄率而提供效用。储蓄是用未来消费替代当前消费的一种方式。我们要想对储蓄进行令人满意的分析,就必须考虑它的这种基本作用,而不是仅仅在无差别曲线图中加上一条轴。多考虑几个时期是十分重要的。与储蓄不同,积累起来的财富可能具有某些特性,使它部分地像其他消费劳务一样成为一种商品,因为它提供了用于应付紧急情况的储备。这项服务可以在无差别曲线的一条轴上进行测度,而部分收入可以看作是用于购买它。用来购买这项服务的收入是从该财富得到的(预期平均)最大收益与作为一种储备而提供较大效用的方式持有该财富而得到的实际(预期平均)收益之间的差额。

  如果我们忽略财富的这种作用,那么在无差别曲线图上最容易表示出来的情形就是欧文·费雪所分析的那种,即:假设有限时期的情形,最简单的就是两年期的情形。图2.26中给出了这一情形的图形。纵轴测量第一年的消费,横轴测量第二年的消费。对角线表示这两年的等量消费水平。令R1为第一年中的收入,R2为第二年的收入,而r为利息率,并假定这些数量所适用的个人可能在利息率r的水平上借出或借入任何他能够偿还或可以借出的数目。那么,如果第二年他什么也不花,则第一年他可以用于消费的最大数量将是:(3)W=R1+[R2/1+r],因为R2/[1+r]是他可以借入并用他在第二年的收入偿还的最大数目。W是他起初所拥有的财产,它定义了可实现商品组合线与纵轴相交的A点。如果他在第一年什么也不花,则他在第二年可以用于消费的最大数量是:(4)(1+r)W=R1(1+r)+R2。因此AB线是可实现商品组合线。市场上的替代率是这样一种水平,它使得个人在第一年每减少1美元的消费就可以在第二年增加(1+r)美元的消费。如图所示,均衡点P点表示了使第二年比第一年可以有更高消费水平的一种选择,但是,这当然是一组特定的无差别曲线和一种特定利息率的结果。


  我们可以运用这一简单的模型来说明一下时间偏好——个人愿意依此以未来消费替代当前消费的比率。时间偏好率因此是无差别曲线的斜率,并且会因处于图中不同的点而有变化。在相应于第一年消费水平高、第二年消费水平低的一点上,个人偏好于增加未来的消费而非偏好于当前的消费,即他愿意放弃一美元以上的当前消费以增加一美元的未来消费。相反,在相应于未来消费水平高而当前消费水平低的一点上,个人则偏好于增加当前消费而非未来的消费,即为了补偿他所放弃的一美元当前消费,需要进行多于一美元的未来消费。因此,时间偏好率是一个变量,它依赖于当前和未来的消费水平。在P点,时间偏好率等于市场替代率(1+r),因为个人将调整他的消费时间模式以实现这一均等。

  人们常说,某个人“低估了未来”或有“对于现在而非未来的偏好”,或“对未来进行了贴现”。对这些说法赋予一定意义的一种方式是在图2.26中的对角线上用时间偏好率的语言来定义它们。在这条线上,未来消费等于当前消费。看来有理由说,如果对处于这条线上的各点而言,无差别曲线的斜率是1,或如果无差别曲线是与此线对称的,则个人在现在和未来之间就是中立的。如果各条无差别曲线对于在这条线上的各点来说比那条-45度的线更平坦,则表示个人将低估未来,如果那些曲线更陡峭,则表示个人将高估未来。我们可以更一般地说,如果各无差别曲线是以这样一种方式与对角线不对称,即对角线左侧的一点比它在对角线右侧相对应的一点位于一条更高的无差别曲线上,则个人就会低估未来。

  再回过来看消费和储蓄的决定问题,我们又回到一种熟悉的局面中。看来消费模式依赖于三个变量:R1,R2,r,然而从图2.26来看,很清楚,只有两个变量是重要的:W=R1+(R2/[1+r])和r,即财富和利息率:(5)C=f(r,W)如果我们把R1和R2解释为在两年中度量到的收入,则每年的消费不是依赖于收入,而是依赖于财富(或“持久收入”)。另一方面,如果我们将储蓄定义为度量到的收入和消费之间的差额,则储蓄依赖于收入,因为(6)S1=R1-C=R1-f(r,W)

  在这一模型中,储蓄有两个动机:“调直收入流”,也就是,在一段时间内使消费比收入更稳定——这一动机使R1进入了方程6;以及通过储蓄得到一项收益,这一动机使r进入了方程5。方程5中的W可以看作起到一种双重作用,既作为可利用机会的一种测度,又作为对预防不测之储备的消费服务的一种测度。

  如果图2.26中的无差别曲线是相似的,即如果这些无差别曲线在从原点起的各个方向上都具有相同的斜率,则方程5就会出现一种特殊情况。这时方程5就简化为:(7)

  C=k(r)·W

  C=k(r)·W

  或者,为了把可能影响消费、但又没有包括在我们的简单表达式中的其他因素也包括进来,可写为:

  (8)C=k(r,u)·W

  此处的u代表那些其他因素。在这一特例中,我们将用在对角线上的各无差别曲线的共同斜率来定义消费者时间偏好率的数量值。如果消费者在这一意义上有中性时间偏好,则对于任何正的利率,未来消费都将超过当前消费。如果消费者对未来进行了贴现,则对于某些正的利息率来说,当前消费将会超过未来消费。

  这个简单的时期模型还可以用来说明个人所能进行的借与贷之间的利率差的影响。这一差别额可能仅仅起因于借者和贷者之间的金融媒介的各项成本,或仅仅起因于人力资本和非人力资本之间的差别,这一差别使得人力资本作为贷款的一种派生物通常不那么令人满意。为rB为消费者可以依其得到借款的利息率,而rL为消费者可以依以贷出款项的利息率,并且rB>rL。则这一消费者的预算线将如图2.27所示,在相应于两年期收入(R1,R2)点的位置上有一个折点。因此,对财富的度量就不是含糊不清的了,而最终的度量结果可能有赖于初始状态,即依赖于初始状态的位置和无差别曲线的形状。

  将这一分析推广到无限时期的情况,用公式方法并不困难,用二维图形的方法则很难做到。公式的推广方法是,把经济行为者看作是一个作为整个未来消费模式函数的效用函数:(9)U=F[C(t)],

  其中C(t)代表时刻t的消费流量,而t从所讨论的时期一直延伸到无限的未来,例如说从to到∞。这个经济行为者还被设定为拥有如下一个机会集:

  (10)G[C(t)],

  此集合概括了对他来说可能实现的各种消费时间模式。因此,他被设定为,在方程10的机会集的约束条件下,使方程9的效用函数最大化。

  这一公式非常之通用,而且非常之空洞。为了使之具有一定的内容,有必要使方程9和10具体化。例如,方程9可以加以具体化,即假定存在着某种内部贴现率,比如说,可以将方程9写成如下的特殊形式:

  (11)U(to)=∫∞tof[C(t)]e-ρtdt

  当然,在这个例子中,方程11的任何单调变换,比如说:(12)U*=F(U),都会产生同样的结果,只要F’(U)>O。方程10则可以通过假定存在着某种市场利息率r,使得任何消费模式都可实现的方式加以具体化,这时对于该消费模式有:(13)

  W(to)≥∫∞toC(t)e-rtdt,其中W是个人在未来的预期收入流的、与方程11类似的贴现值。有许多分析使用了这类使问题具体化的方法,特别是在关于增长模型的文献中,但是尚没有理由强调其中那种具体化方法值得给予特别的信赖。

  在两维图式中表示无限时期情况的一种方法是,用如下的假定来使方程10中的机会集具体化,即假定对个人来说唯一可实现的选择是二维的:对一个时间单位例如一年来说,有一个数量为C1的消费率;对于以后的无限的未来有一个数量为C2的消费率。为了使这一假设有些道理,我们还须假定个人具有无限的生命以及不变的偏好。这一点似乎荒唐,但其实不然。它仅仅是再现下面这一现象的一种方法,即家庭是基本的消费单位,而不是个人,且个人在针对当前消费与未来消费做出决策时,所考虑的是他的后代从消费中推断出来的效用将和他自己的推断一样。具有无限生命力且不改变爱好的个人因此代表了有无限生命力的家庭线索。二维表示方法尽管非常特殊,还是揭示出了为两个时期特例所掩盖的储蓄-支出过程的一个重要特性。

  令R1为第一年收入流量的速率,R2假定为其后无限长期内流量的稳定速率,而r假定为在一定时期内不变的利息率,个人可以在这一利息率水平上进行借贷。由此可知,个人最初的财富状况是:

  (14)W=R1[R2/r]

  这里r成了最后一项的分母;而不是像方程(3)中那样是由1+r作分母,因为这里R2是一个永恒的收入流,而不只是一个时期的收入。这一初始财富水平确定了A点的含义,即如果以后的消费是零,则A为第一时期的最大消费值。第一年结束后的最大消费值是其后的永久收入即R2加上第一年收入所得的利息(如果第一年的消费是零的话),即rR1,故rW=rR1+R2定义了B点,而连接AB的线就是可实现的商品组合线。此线相对于C2轴的斜率是1/r,即为使以后每年增加1美元消费而必须放弃的当前消费的美元数;相对于C1轴来说,斜率是r,即放弃一美元的当前消费所能增加的未来消费的美元。图2.28是按照0.20的利息率画的,以便能够看清不同的点。

  如图所示,P1是一个均衡点,在该点上,第一年的消费水平较之以后无限期中的各年为低,以便能提高未来的消费水平。我们现在再向前移动一年,再看一下这时的情形,这里再次假定:仅有的选择是一个数是为C1的一年期消费率和数量为C2的以后各期的消费率(这是此类分析方法的不太令人满意的因素,因为我们当然会希望个人在时刻O就选择好整个未来的消费模式,而不是以这种一次走一步的方式前进)。既然我们假定了个人具有不变的偏好,因此,这时的无差别曲线和P1点时是一样的,但机会线不同了,因为第一年的储蓄被加到了个人的财富中。新的机会线(A’B’)将通过对角线上相应于P1的横坐标的那一点。新的均衡点是P2。

  虚线是以后各年的这类均衡点的轨迹,它定义了个人未来消费的路径。如图所示,虚线在P3点与对角线相交。在这一点上,个人的如前面所定义的时间偏好率(对于一种不变的消费水平来说)等于其能够依以当前收入替代未来收入的比率。这一点一旦达到将维持下去。

  假定在我们开始时,个人拥有的财富水平使得P4成为均衡点。这样,个人就会减少储蓄,即减少财富以增加当前消费。个人将会沿着之字虚线所提示的路径下降一直到P3点。

  这一套方法的优点在于它揭示了财富的均衡存量(所希望有的财富)与实现这一财富存量水平的均衡速率之间的区别。如果个人尚未具有这一财富存量,他将会向这一数量靠拢。将存在一种均衡的速率,而个人愿意依照这一速率向该存量水平靠近,这速率的大小既依赖于个人距离他的理想财富有多远,也依赖于他当前的财富水平如何。在决定财富的理想存量时所考虑的问题不同于决定其希望以多快的速度靠近该水平时所做的考虑,尽管这一区别被图2.28中的二维表示法弄得模糊不清了。

  在2.28图中,为了使其中存在一个财富的均衡水平,必须使无差别曲线的斜率随着财富的增加而沿着对角线变得越来越平坦;也就是说,图中必须要求未来消费有越来越大的增加量以补偿放弃一美元当前消费的损失,或者换言之,必须使相对于未来消费而言的对当前消费的偏好随财富的增加而增强。从直觉上看这似乎有点反常。看来如果应该出现什么情况的话,相反的情况倒更可能出现。

  如果无差别曲线是相似的,即它们沿从原点开始的各条射线都有相同的斜率,那么虚线就决不会像图2.28中的虚线那样与对角线相切。它倒更可能是一条起于原点的射线。如果它低于对角线,则它将意味着财富的无限积累;如果它高于对角钱,则意味着无限的反积累。但是不论在哪种情况下,都会存在一个均衡的积累率或反积累率。对于近代进步的社会来说,可观察到的现象与隐含着无限积累的图示之间不存在不一致。

  这是对一个非常复杂的问题的一种非常不完整的处理方法。其目的在于显示我们所发展起的这套方法如何能够说明这类问题。

免责声明:本文仅用于学习和交流目的,不代表素心书斋观点,素心书斋不享任何版权,不担任何版权责任。

 

第25篇 可变汇率论 - 来自《弗里德曼文萃》

西方国家似乎把自己交于了这样一种国际支付体系,这种体系是以政府所确定的、各国的通货之间的汇率为基础的,这种汇率除偶而发生变动、改为新的水平外,一般是保持刚性的。这一体系包含在国际货币基金组织的章程之中,国际货币基金组织的章程规定:各政府可以不需经国际货币基金组织的允许而在10% 的幅度内改变其汇率,至于更大幅度的变动,则只有经国际货币基金组织的允许才能进行;这一体系在欧洲支付联盟中是不言而喻的;而在几乎所有有关国际经济政策的讨论中,这一体系都被视为是理所当然的。  不论这一体系他日会有什么样的功绩,但……去看看 

7、一个研究所有制的框架 - 来自《财产权利与制度变迁》

H.登姆塞茨   所有制作为一个论题在社会科学和哲学中已有很长的历史,不过这一讨论到今天在其经济方面仍没有整合。从R.H.科斯发表“社会费用问题”(1960年)直到最近的著作仍未解决这一问题。本文的主要目的是要理出这一讨论的顺序,尤其是关于几篇文章在这一顺序中的地位。近期文献的一个普遍特征是它们所关注的往往不是所有制本身,这在任何地方都不会比科斯关于社会问题的著名文章更为真实。他的论题是外部性,而不是所有制。他的目的是要宣称已为人们所接受的关于外部性的教条是错误的,而不是想引出一个关于所有制理论的结论……去看看 

第22章 - 来自《机关滋味》

市委机关和乡镇的工作,完全是两码事。乡镇工作就像现在农村的联产承包,完全是松散的,干完农活,回家聊聊天打麻将。市委机关就像过去的生产队,组织严密,生产队长又抓得紧,工作节奏很强。盛德福调到市委办后,就成为一个不可或缺的零件,随着整部机器,紧张地运行起来。他知道黄三木失恋了,有次在市委门口碰到,他紧紧地握住黄三木的手,说了些安慰的话,后来又从邓汜边和童未明那里了解了一些情况,知道黄三木情绪很差,很消极。可惜,他白天要跟洪书记跑,晚上要搞材料,最终还是没能抽出时间,去邮电招待所看看黄三木。盛德福的住所很理想,正是他所喜欢……去看看 

第四七章 论这种黑暗所产生的利益以及其归属于谁的问题 - 来自《利维坦》

西塞罗非常推崇地提到罗马人中一位姓卡西的严厉法官在刑事案件方面所订立的一种习惯法。那便是在证人的证据不充分时询问原告,“对他有什么利益”也就是被告在这一事情上所取得的或打算取得的利益、荣誉或其他满足是什么。因为在所有的推定中,把行为者的情形说明得最清楚的莫过于行为的利益。我在这里打算根据同一法则来考查一下,究竟是哪些人在我们这一部分基督教世界里用一些与人类和平社会相冲突的学说把人民迷惑了这样久。     首先,关于今世在地上的卫道教会就是上帝的国(即荣耀的国或福地,而不是神恩的国,后者只是……去看看 

第二版序 - 来自《东晋门阀政治》

《东晋门阀政治》一书,出版在两年以前。今年重印此书,北京大学出版社不顾成本上的困难,决定废弃旧纸型,重排新版,作为再版印出。这使本书外观得以大大改善,作者十分感激。这次重印,原计划是利用旧版,碍于修版困难,改动受到限制。当得知重排新版消息时,排版已近竣工,而且付印在即,所以又只好在校样上增作修改。时间短促,作者只能尽力而为了。再版改动之处,有的是更换原来不恰当的资料和完善不周全的论点,有的是修正原稿在抄、排、校中形成的漏误;有的改动只涉及词句,有的则是大段落的增补。当然也有删削之处。《自序》中曾说门阀政治即士……去看看